
Drawing and Views

Drawing: The Big Ideas

• All drawing is done using the PostScript language

• The Application Kit provides a powerful class called
View to support drawing

• Most visible objects in kit are descended from View

• View allows programmer to easily take advantage of
full power of PostScript

• Kit architecture allows programmer to focus on what
to draw, rather than on when to draw it

6 - 1

View Basics

• Views are kit objects which provide a context for
drawing, i.e.:

• Within which window will the drawing occur

• Where in the window will the drawing appear

• What coordinate system will be used

• What drawing will be visible

• What drawing will be done

• Views always live within a hierarchy of other
views and this hierarchy of views ultimately lives
within a specific window

6 - 2

View Basics

• The “drawing context” associated with a view is
determined by:

• The “drawing context” implicitly established by the
view’s position in a view hierarchy

• Explicit actions taken by the programmer

• Prior to any drawing done by the view, the
view’s “drawing context” must be sent down to
the server, and made the “drawing context” for
the application

6 - 3

View Basics

• More about Views

• Views are contained within windows or other
views

• A View has a position, extent and orientation
within which it can draw and to which it is clipped

• A View has its own PostScript coordinate system

• A View has methods for displaying itself

• A View has methods to respond to events

6 - 4

View Basics

• Important instance variables of Views

• frame • bounds

• superview • subviews

• window • nextResponder

• Important methods of Views

• initFrame:

• display

• drawSelf::

6 - 5

View Basics: NXPoint, NXSize and NXRect

• NXPoint - a point location on the screen

typedef struct _NXPoint{
NXCoord x;
NXCoord y;

} NXPoint;

• NXSize - width and height of a rectangle

typedef struct _NXSize{
NXCoord width;
NXCoord height;

} NXSize;

6 - 6

View Basics: NXPoint, NXSize and NXRect

• NXRect - a rectangle, with origin and size

typedef struct _NXRect{
NXPoint origin;
NXSize size;

} NXRect;

• Example

NXRect r;
r.origin.x = r.origin.y = 0.0;
r.size.width = r.size.height= 100.0;

or

NXSetRect(&r,0.0,0.0,100.0,100.0);

6 - 7

View Basics: Subviews and Superviews

• Windows are initially created containing two
views

• frameView (includes title bar, resize bar, black
border)

• contentView (drawing area inside the frame)

Window

frameView

contentView

other views other viewsother views

6 - 8

View Basics: Subviews and Superviews

• To add additional views:

• Replace contentView with another view:

oldContentView = [myWindow setContentView: aView];

• Add views as subview of contentView

[[myWindow contentView] addSubview: aView];

6 - 9

View Basics: Subviews and Superviews

contentView

ViewA

ViewB

ViewC

ViewD

• A view has only 1 superview, but can have n subviews

• View hierarchy determines:

• Absolute coordinate system

• Order of drawing and of responding to events

6 - 10

View Basics: Subviews and Superviews

• Example of Setting View Hierarchy:

viewA = [[View alloc] initFrame:&aRect];
viewB = [[View alloc] initFrame:&bRect];
viewC = [[View alloc] initFrame:&cRect];
viewD = [[View alloc] initFrame:&dRect];
[[window contentView] addSubview:viewA];
[[window contentView] addSubview:viewB];
[viewA addSubview: viewC];
[viewC addSubview: viewD];

Window

contentView

ViewA ViewB

ViewC

ViewD

6 - 11

View Basics: Subviews and Superviews

Window

contentView

ViewA ViewB

ViewC

ViewD

View Order of Coordinate System
name Drawing Dependency
Window First screen
contentView After Window Window
viewA After contentView contentView
viewC After viewA viewA
viewD After viewC viewC
viewB After viewD contentView

6 - 12

View Basics: frame

• All views live within the context of another view
and ultimately within a window

(0,0)

400

300

(50,50)

(superview’s coordinates)

superview

frame
rectangle

• All views have an instance variable called frame
which is an NXRect which specifies position and
size of the view within its enclosing view’s
(superview’s) coordinate system

6 - 13

View Basics: frame

• frame is defined relative to superview’s coordinate
system

• frame is typically set when the view is created:

NXRect r;
NXSetRect(&r,50.,50.,400.,300.);
aView = [[View alloc] initFrame:&r];
[bView addSubview:aView];

• Origin of resulting frame (lower lefthand corner) = {50.,50.}

• size.width = 400., size.height = 300.

• All drawing within the view is clipped to the frame

6 - 14

View Basics: coordinate system

• All views have their own coordinate system:

• PostScript coordinate system (i.e., floating point

and positive up and to the right)

• Origin of the coordinate system {0.0,0.0} is
positioned by default at the origin of the frame
and is parallel to the side of the frame

6 - 15

View Basics: coordinate system

• Coordinate system may be scaled, translated,
rotated or flipped (origin in upper left)

• All drawing in the view is done relative to the
view’s coordinate system

• Drawing can logically occur anywhere within the
coordinate system, but only the portion of the
drawing which intersects with the frame will be
visible

6 - 16

View Basics: coordinate system & frame

• The internal coordinate system may be
translated, scaled or rotated:

/* following code translates the coordinate
system so that the new origin is at
100.0,30.0 relative to its old coordinate
system within the view */

[aView translate:100.0 :30.0];

(-100,-30)

(0,0)

(internal coordinates)

frame rectangle

6 - 17

View Basics: coordinate system & frame

(-100,-30)

(0,0)

(internal coordinates)

frame rectangle

• Note that the frame of a view is unaffected by any
change in the internal coordinate system of the view

• Before: frame = {50.0,50.0,400.0,300.0}
• After: frame = {50.0,50.0,400.0,300.0}

• Note, however, that the portion of the drawing
which is visible to the user is affected by the
change in the internal coordinate system, since it
has moved relative to the frame

6 - 18

View Basics: bounds

• All views have an instance variable called bounds
which specifies what portion of the view’s coordinate
space may actually be visible to the user

bounds

rectangle

• bounds is the smallest NXRect expressed in the
coordinate system of the view which encloses
the area of the view’s coordinate system
currently visible through the frame

6 - 19

View Basics: bounds

bounds

rectangle;

also, the

frame

• By default, bounds.origin is at the origin of the
coordinate system, hence its origin is (0.0,0.0) and
its size is the same as that of the frame. For
example:

• bounds = {0.0,0.0,400.0,300.0}
• frame = {50.0,50.0,400.0,300.0}

• You can optimize your drawing by only drawing
those things which lie within bounds

6 - 20

View Basics: coordinate system & bounds

• Unlike frame, bounds is affected by any change in
the internal coordinate system:

/* following code translates the coordinate
system so that the new origin is at 100.0,30.0
relative to its old coordinate system within
the view */

 [aView translate:100.0 :30.0];

(-100,-30)

(0,0)

(internal coordinates)

6 - 21

View Basics: coordinate system & bounds

(-100,-30)

(0,0)

(internal coordinates)

• Example:

• Before: bounds = {0.0,0.0,400.0,300.0}

• After: bounds = {-100.0,-30.0,400.0,300.0}

• bounds changes in response to the coordinate
system since a different portion of the coordinate
space may now be visible

6 - 22

View Basics: Rotating the frame

• The view may be rotated within its superview:

/* following code rotates the view around
its frame.origin */

[aView rotateBy:10.0];

• Rotating a view’s frame rotates the image, but
does not change what is visible

6 - 23

View Basics: Rotating the frame

• Rotating a view’s frame rotates the view’s coordinate
system, and with it, bounds. Note, however, that the
value of bounds does not change

• Before: bounds = (0.0,0.0,400.0,300.0)

• After: bounds = (0.0,0.0,400.0,300.0)

6 - 24

View Basics: Rotating the coordinate system

• A view’s internal coordinate system may be
rotated independent of its frame:

/* following code rotates the view around
the origin of its coordinate system */

[aView rotate:10.0];

6 - 25

View Basics: Rotating the coordinate system

• Rotating the coordinate system not only rotates
the image, but may also change what is visible

• Rotating the coordinate system will not affect the
frame of the view, however, generally it will affect
both the origin and size of the bounds

• bounds must change to ensure that given the new
relationship of the coordinate system to the frame,
bounds will entirely enclose the area of the frame,
and hence specify the maximum visible area of
the view

6 - 26

View Basics: frame vs. coordinate system

• Rotating the frame results in:

6 - 27

View Basics: frame vs. coordinate system

• Rotating the coordinate system results in:

6 - 28

View Basics: Clipping

• By default, a view is clipped to the intersection of
its frame and the frames of its superviews:

/* this message makes view B a subview of
view B */

[viewA addSubview:viewB];

View A

View B

6 - 29

View Basics: Clipping

• Note: bounds will not reflect the smaller clip that
may result

• Use getVisibleRect: if you need to determine what
portion of the view will actually be visible based on
the intersection of the frames of its superviews:

NXRect r;
[viewB getVisibleRect:&r];

• Turn clipping off, if you know you do not need it...

[aView setClipping:NO];

6 - 30

View Basics: Bottomline on frame & bounds

• Use frame to specify where your view lives in its
superview and how big it is

• Use bounds to tell you the area within your
coordinate system which may be visible

• Use getVisibleRect: to tell you what portion of
your view is actually visible

6 - 31

View Basics: View Methods

• Creating a View

myView = [[View alloc]initFrame:&mRect];

• Setting a View’s position in hierarchy

[aView addSubview:myView];

• Changing a View’s position, extent or orientation

[myView moveTo:200.0 :100.0]; (abs)
[myView moveBy:10.0 :10.0]; (rel)

[myView sizeTo:300.0 :400.0]; (abs)
[myView sizeBy:100.0 :100.0]; (rel)

[myView rotateTo:20.0]; (abs)
[myView rotateBy:10.0]; (rel)

6 - 32

View Basics: View Methods

• Changing a View’s Internal Coordinate System

[myView setDrawOrigin:5.0 :5.0]; (abs)
[myView translate:-5.0 :-5.0]; (rel)

[myView setDrawRotation:-10.0]; (abs)
[myView rotate:-20.0]; (rel)

[myView setDrawSize:10.0 :30.0]; (abs)
[myView scale:2.0 :2.0]; (rel)

6 - 33

Drawing in Views

• A view’s coordinate system is, in fact, a
transformation of its superview’s coordinate
system and depends on:

• Its own coordinate system

• Position and orientation of its frame, and

• The superview’s coordinate system

• Examples

• Rotating a superview rotates its subviews

• Scaling a superview scales its subviews

• Translating a superview translates its subviews

6 - 34

Drawing in Views

• Prior to drawing in a View, the kit must:

• Transform window’s coordinate system into the
view’s coordinate system

• Set clipping path to frame

• Automatically done in view-provided method
called display

6 - 35

Drawing in Views: display and drawself::

• What the Kit will do for you in display

• Save current graphics state via PSgsave()

• Make view’s coordinate system current coordinate
system (lockFocus) for window and set clip path

• Tell view to drawSelf::

• Tell subviews to display themselves

• If a buffered window, display will flush to screen

• Restore previous coordinate system clip path and
graphics state via PSgrestore()

6 - 36

Drawing in Views: display and drawself::

• What you do in drawSelf::

• Over-ride default drawSelf:: method

• Within drawSelf:: send PostScript commands
necessary to draw in the View

6 - 37

Drawing in Views: display and drawself::

Example drawSelf:: method

- drawSelf: (const NXRect *)r: (int)c {
PSsetlinewidth(2.0);
PSsetgray(0.0); //black
PStranslate(bounds.size.width/2.0,
bounds.size.height/2.0);//origin to center

PSrotate(45.0);
PSrectstroke(0.0,0.0,100.0,100.0);
return self;

}

• Arguments to drawSelf:: can be used to optimize
drawing

• Never directly send drawSelf:: to a View. Send
display to the View, and the display method will
send drawSelf:: to the View

6 - 38

Drawing in Views: display and drawself::

Example drawSelf::

- drawSelf: (const NXRect *)r :(int)c;{
id cShape;
int cs;

if(SIMPLEDRAW){
NXEraseRect(r);
for(cs=0;cs<[shapeList count];cs++)

[[shapeList objectAt:cs] drawShape];
}
else {
NXRectClip(r);
NXEraseRect(r);
for(cs=0;cs<[shapeList count];cs++){

cShape = [shapeList objectAt:cs];
if(NXIntersectsRect(r,[cShape bbox]))
[cShape drawShape];

}
}

6 - 39

Drawing in Views: display and drawself::

return self;}

6 - 40

Drawing in Views: display and drawself::

Example of a drawShape method for drawself::
above

- drawShape
{

PSsetgray(shade);
if(fill)
 NXRectFill(&bbox);
else
 NXFrameRect(&bbox);
return self;

}

6 - 41

Drawing in Views: display and drawself::

• When does display get sent?

• When you explicitly send it

• During scrolling

• When its superview has been told to display itself

• When its window has been told to display itself

6 - 42

Drawing in Views: display and drawself::

• When will a window display itself?

• When explicitly told to do so within app

• In response to a window re-size event

• In response to a window exposed event if it is a
non-retained window, or if doing instance drawing

6 - 43

Drawing in Views: lockFocus

• When won’t you use drawSelf::

• One shot drawing

• Dynamic drawing in response to user action

• Use lockFocus and unlockFocus when drawing
outside of drawSelf::

• lockFocus creates appropriate transform matrix
and clip path

• unlockFocus restores previous transform matrix
and clip path

6 - 44

Drawing in Views: lockFocus

• Example:

// myDraw is defined for a subclass of View
- myDraw
{
[self lockFocus];
 PSsetlinewidth(2.0);
 PSsetgray(0.0);
 PStranslate(bounds.size.width/2.0,
 bounds.size.height/2.0);
 PSrotate(45.0);
 PSrectstroke(0.0,0.0,100.0,100.0);
[self unlockFocus];
[window flushWindow]; //if buffered window

(default)
}

6 - 45

Drawing in Views: Bottomline on display and
drawSelf::

• Call display when you want a view and its
subview’s to be re-drawn

• display will make the view’s drawing context be
the current drawing context for the application

• It will call the view’s drawSelf:: method so the view
can draw itself

• Repeats process for the view’s subviews

• Put the code necessary to draw your view in
drawSelf::

• Use lockFocus and unlockFocus whenever you
do drawing outside the context of drawSelf::

6 - 46

PostScript Drawing

• 2 recommended ways to send PostScript to
Server

• Single operator 'C' functions

• pswrap generated functions

6 - 47

PostScript Drawing: Single operator 'C' functions

• Every PostScript command has a corresponding
'C' function which sends a command to server
and returns a value

• For efficiency, the single operator 'C' functions
send and receive binary-encoded PostScript

• The single operator 'C' functions are all of the
form PSfunctionname

• PSsetlinewidth(2.0);

• PSstringwidth(“hi there”,&width,&height);

• Best when sending only a few PostScript
commands

6 - 48

PostScript Drawing: pswrap

• pswrap is a utility which converts “raw”
PostScript into equivalent 'C' functions which
send and receive binary-encoded PostScript to
and from server

• Most efficient means of sending multiple
PostScript commands to server

• Implemented as a pre-processor to 'C' compiler

6 - 49

PostScript Drawing: pswrap

• Example:

/* pswrap function */
defineps drawrect(float w,h)

0 setlinewidth
0 setgray
0 0 w h rectstroke

endps

...
/* send function to server and execute it*/
drawrect(10.0,20.0);
...

6 - 50

PostScript Drawing: pswrap

• pswrap definitions consist of 4 parts

• defineps keyword in column 1

• 'C' function declaration with arguments preceded
by cast

• The wrap body, a PostScript code fragment

• endps keyword in column 1

6 - 51

PostScript Drawing: pswrap

• Note: Only explicitly declared output arguments
return values. For example:

defineps getGray(|float *level)
currentgray level

endps

/* example of using get gray */
float cLevel;
getGray(&cLevel);

6 - 52

PostScript Drawing: pswrap

• You can decrease amount of PostScript sent to
server by using pswrap functions to define
functions which are downloaded once. Example:

defineps boxSetup(float lw)
/box { /h exch def
 /w exch def

 lw setlinewidth
 0 0 w h rectstroke
 } def
endps

defineps callBox(float x,y)
 x y box
endps
...
boxSetup(2.0) /*send definition once*/
...
callBox(30.0,40.0) /*call to draw box*/

6 - 53

PostScript Drawing: pswrap

• “make” runs pswrap on any file with a .psw or
.pswm suffix

• For more on pswrap, see Appendix B of
Programming the Display PostScript System
with NeXTSTEP, by Adobe Systems, Inc.

6 - 54

References

NeXT documentation manuals.

Programming the Display PostScript System with NeXTSTEP, by

Adobe Systems, Inc., Addison-Wesley, 1991.

NeXTSTEP Applications Programming: A Hands-On Approach, by

Simson Garfinkel and Michael K. Mahoney, Spring-Verlag, 1992.

The best book anywhere on developing applications under

NeXTSTEP.

VisibleView
This program is an excellent demonstration and example of view

principles. It is used as a teaching aid in the NeXT Developer

Camp.

SimpleDraw
This example includes both simple and advanced drawing

techniques. It is incomplete and needs some work, a good project

to learn on.

6 - 55

